فوتونیک
فوتونیک
فوتونیک علمی است که گستره آن شامل ایجاد، انتشار، انتقال، مدولاسیون، سوئیچینگ، تقویت و آشکارسازی نور می شود.
با اختراع لیزر، و پس از آن، با ساخت فیبر نوری شاخهٔ اپتیکدر علم فیزیک آنقدر گسترده گردید و کاربردهای آن آنقدر زیاد شد، که زمینهای جدید موسوم به فوتونیک در علم متولد گردید.
این شاخهٔ جدید در سه گرایش الکترونیک، مخابرات، و فیزیککار خود را شروع نمود.
فوتونیک- الکترونیک
پیشرفت روز افزون تکنولوژی و ساخت قطعات الکترونیکی کوچک و کوچکتر تا به آنجا ادامه یافته است که امروزه پیشبینی میشود که در چند سال آینده دیگر نتوان قطعاتی از این کوچکتر ساخت که قادر به عبور جریان الکتریسیته باشند به گونهای که در آنها عبور یک الکترون برابر خواهد بود با برقراری جریان و عدم عبور آن یعنی قطع جریان الکتریکی. این مساله باعث شده تحلیل مدارات دیگر از حوزه الکترونیک کلاسیک خارج شده و بررسی چنین سیستمی بر عهدهٔ مکانیک کوانتمی نهاده شود که دارای مشکلات خود میباشد. این امر باعث شده است تا دانشمندان به فکر جایگزینی برای الکترون بیافتند تا مشکلات الکترون را نداشته باشد و در اولین گزینهها فوتون یعنی کوانتای نور را جایگزینی مناسب یافتند. پس، از این پس باید به دنبال ساخت ادواتی بود که جای ادوات الکترونیکی را در مدارات بگیرد و در آنها فوتون نقش اساسی را بازی کند. تحقیقاتی که این هدف را دنبال میکنند در حوزهٔ فوتونیک شاخه الکترونیک آن بررسی میشود و بر عهده این بخش است.
فوتونیک- فیزیک
شاخهٔ دیگری از علم فوتونیک، فوتونیک- فیزیک است. در این شاخه نیز به مباحث بسیار زیادی از جمله روابط حاکم بر برهمکنش نور با ماده، میکروسکوپهای روبشی میدان نزدیکنوری و ... پرداخته میشود.
فوتونیک مخابرات
ساخت فیبر نوری و اختراع لیزر بشر را به این سو هدایت کرد تا مخابراتی پیشرفته بر مبنای این دو تکنولوژی بسازد. این مخابرات اکنون به ظهور رسیده است و روز به روز بر قدرت و سرعت آن افزوده میشود.
مشکلات فوتونیک در حوزه مخابرات
سیستمهای مخابرات نوری یا همان مخابرات بر پایه لیزر و فیبر نوری هنوز در کار با سیگنالهای مخابراتی از سیستمهای الکترونیکی استفاده میکند که سرعت کار آنها را به شدت پایین میآورد. این مشکل با تمام نوری کردن تمامی ادوات به کار رفته در این مدارات ممکن است. به همین دلیل یکی از جبهههای پر رونق در علم فوتونیک امروز ساخت جایگزینهای این اداوات الکترونیکی به صورت نوری میباشد.
الکترو اپتیک
اثر الکترو اپتیک (به انگلیسی: ELECTRO-OPTICS) تغییریست در ضریب شکست که از اعمال یک میدان الکتریکی فرکانس پایین و پایا حاصل میشود. میدان الکتریکی اعمالی به یک ماده اپتیکی غیر همسانگرد، ضریب شکست آنرا تغییر میدهد و بنابراین بر نور قطبیدهای که از آن گذر میکند تأثیر میگذارد.
برخی از مواد شفاف زمانی که در معرض میدان الکتریکی قرار میگیرند، خواص اپتیکیشان را تغییر میدهند. این نتیجهایست از نیروهایی که مکان، جهتگیری یا شکل مولکولهای سازنده ماده را تغییر میدهند.میدان الکتریکی پایای اعمالی به یک ماده الکترواپتیک، ضریب شکست آنرا تغییر میدهد. در نتیجه، اثر ماده بر نور گذرنده از آنرا تغییر میدهد. بنابراین میدان الکتریکی نور را کنترل میکند.
وابستگی ضریب شکست به میدان الکتریکی اعمالی
وابستگی ضریب شکست به میدان الکتریکی اعمالی معمولاً به صورت یکی از دو حالت زیر میباشد:
- ضریب شکست متناسب با میدان الکتریکی اعمالی تغییر میکند و این اثر با نام اثر الکترواپتیک خطی یا اثر پاکلز (به انگلیسی: Pockels effect) شناخته میشود.
- ضریب شکست متناسب با توان دوم میدان الکتریکی اعمالی تغییر میکند و این اثر با نام اثر الکترواپتیک درجه دوم یا اثر کر (به انگلیسی: Kerr effect)شناخته میشود.
تغییر در ضریب شکست به صورت نوعی کوچک است. با اینحال اگر طول انتشار به طور قابل توجهی از طول موج نور بیشتر شود، فاز یک موج اپتیکی در حال انتشار در یک محیط الکترواپتیکی میتواند تغییر کند. به عنوان مثال، اگر ضریب شکست در حضور میدان الکتریکی با ضریب افزایش یابد، موج اپتیکی که طول انتشارش برابر طول موج باشد، انتقال فازی برابر را تجربه خواهد کرد.
کاربردها
موادی که بوسیله یک میدان الکتریکی اعمالی، ضریب شکست آنها را میتوان تغییر داد، برای تولید دستگاههای نوری که با میدان الکتریکی کنترل میشوند سودمند خواهند بود. به مثالهایی از این دستگاهها در زیر اشاره میشود:
- لنزی که از مادهای که ضریب شکست آن میتواند تغییر کند ساخته شدهاست، لنزی با فاصله کانونی قابل کنترل میباشد.
- منشوری که قابلیت شکست پرتو آن قابل کنترل میباشد، میتواند به عنوان یک دستگاه پویشگر نوری استفاده شود.
- نور گذرنده از یک ورقه شفاف نازک با ضریب شکست قابل کنترل، متحمل انتقال فاز قابل کنترلی میشود. بنابراین ورقه میتواند به عنوان مدولهگر فاز نوری به کار برده شود.
- یک کریستال غیر همسانگرد که ضریب شکست آن میتواند تغییر کند، به عنوان تأخیرانداز موج با زمان تأخیر قابل کنترل، استفاده میشود. از آن ممکن است برای تغییر خواص قطبشی نور بهره برد.
- یک تأخیرانداز که بین دو قطبشگر هم محور قرار گرفته باشد، سبب میگردد شدت نور عبوری به تأخیر فاز بستگی داشته باشد. بنابراین گذردهی چنین دستگاهی به طور الکتریکی قابل کنترل خواهد بود و در نتیجه از آن می توان به عنوان مدولهگر شدت نور یا کلید نوری استفاده کرد.
اجزای قابل کنترل مانند اینها، کاربردهای چشمگیری در ارتباطات نوری و پردازش پالس نوری پیدا کردهاند. یک میدان الکتریکی از طریق جذب میتواند خواص نوری ماده را تغییر دهد. یک ماده نیمه رسانا از نظر اپتیکی برای نوری که طول موج آن از طول موج شکاف نواری بزرگتر است به صورت طبیعی شفاف میباشد. به هر حال یک میدان الکتریکی اعمالی میتواند شکاف نواری ماده را کاهش دهد و بنابراین فرایند جذب و تبدیل ماده از شفاف به کدر را تسهیل کند. این اثر، که به عنوان جذب الکتریکی (به انگلیسی: electroabsorption) شناخته شدهاست برای ساخت مدولهگرها و کلیدهای اپتیکی سودمند میباشد.